Male Reproductive System
Dr. Gary Mumaugh

Reproductive System Basics
- Primary sex organs (gonads) – testes in males, ovaries in females
- Gonads produce sex cells called gametes (gametes means spouses) and secrete sex hormones
- Accessory reproductive organs – ducts, glands, and external genitalia
- Sex hormones – androgens (males), and estrogens and progesterone (females)
 - Sex hormones play roles in:
 - The development and function of the reproductive organs
 - Sexual behavior and drives
 - The growth and development of many other organs and tissues
- Functioning of the reproductive system ensures the survival of the genetic characteristics of a species
- Male reproductive system consists of organs whose functions are to produce, transfer, and introduce mature sperm into the female reproductive tract, where fertilization can occur
Male Reproductive System
- The male gonads (testes) produce sperm and lie within the scrotum
- Sperm are delivered to the exterior through a system of ducts: epididymis, vas deferens, ejaculatory duct, and the urethra
- Accessory sex glands:
 - Empty their secretions into the ducts during ejaculation
 - Include the seminal vesicles, prostate gland, and bulbourethral glands

Male Reproductive Organs
- Essential organs
 - For production of gametes
 - Gonads of male – testes
- Accessory organs
 - Support the reproductive process
 - Genital ducts convey sperm outside the body
 - pair of epididymides
 - paired vasa deferentia,
 - pair of ejaculatory ducts, and the
 - urethra
 - Accessory glands
 - produce secretions that nourish, transport, and mature sperm
 - pair of seminal vesicles, the prostate, and pair of bulbourethral glands
 - Supporting structures
 - Scrotum
 - Penis
 - Pair of spermatic cords
- Male – Perineum
 - Roughly diamond-shaped area between thighs
 - Extends from pubic symphysis to coccyx
 - Lateral boundary is the ischial tuberosity bilateral Divided into the urogenital triangle and the anal triangle

The Scrotum
- Sac of skin (scrotum = “pouch”) and superficial fascia that hangs outside the abdominopelvic cavity at the root of the penis
- Divided into two compartments - contains paired testicles separated by a midline septum
- Contains testis, epididymis, and lower part of a spermatic cord
- Dartos and cremaster muscles elevate the scrotal pouch
- Its external positioning keeps the testes 3°C lower than core body temperature (needed for sperm production)
The Testes
- Located in scrotum, one testis in each of two scrotal compartments
- Each testis is surrounded by two tunics or layers
- Septa (walls) divide the testis into 250-300 lobules, each containing 1-4 seminiferous tubules
 - Produce and carry the sperm
- The microscopic structure of the seminiferous tubules contains interstitial cells called Leydig cells
 - The interstitial cells produce androgens
- The seminiferous tubules are encased in fibrous capsule called the tunica albuginea
- Seminiferous tubules in testis open into a plexus called rete testis
- From the rete testis, the sperm:
 - Leave the testis via efferent ductules
 - Enter the epididymis

Functions of Testes
- Spermatogenesis - formation of mature male gametes (spermatozoa) by seminiferous tubules
 - Stimulated by FSH from the anterior pituitary
- Secretion of hormones by interstitial cells
 - Testosterone
 - Type of androgen: maleness hormone
 - Secondary male sexual characteristics
 - Regulated by LH from anterior pituitary
Functions of Testes - continued

- Inhibin
 - Inhibits release of FSH by anterior pituitary
 - Allows the testis some control over spermatogenesis
- Estrogen
 - Small amounts secreted by interstitial cells, liver, and other organs
 - Role in males uncertain but may influence spermatogenesis and other functions

Testicular cancer
- Very rare cancer (<1% of all cancers), but most common cancer of young men
- Most common risk factor – cryptorchidism (undesended testicle)
- 7000 cases per year with 300 death per year
- 90% success rate with orchidectomy

Spermatogenesis
- The sequence of events that produces sperm in the seminiferous tubules of the testes – takes 64 to 72 days
- Each cell has two sets of chromosomes (one maternal, one paternal)
- Humans have 23 pairs of chromosomes
- Spermatogenesis begins at puberty and continues throughout life
- Healthy adult male produces 400 million sperm per day
- Sperm have three major regions
 - Head – contains DNA and has a helmetlike acrosome containing hydrolytic enzymes that allow the sperm to penetrate and enter the egg
 - Midpiece – contains mitochondria spiraled around the tail filaments
 - Tail – a typical flagellum produced by a centriole
Male Secondary Sex Characteristics

- Male hormones make their appearance at puberty and induce changes in nonreproductive organs, including
 - Appearance of pubic, axillary, and facial hair
 - Enhanced growth of the chest and deepening of the voice
 - Skin thickens and becomes oily
 - Bones grow and increase in density
 - Skeletal muscles increase in size and mass
- Testosterone is the basis of libido in both males and females

The Penis

- Composed of three cylindrical masses of erectile tissue, one of which contains urethra
- Functions
 - Contains the urethra, the terminal duct for both urinary and reproductive tracts
 - Penetrating copulatory organ during sexual intercourse
- Consists of an attached root and a free body that ends in the glans penis or head
- Prepuce, or foreskin – cuff of skin covering the distal end of the penis
- Internal penis – the urethra and three cylindrical bodies of erectile tissue
- Erectile tissue – spongy network of connective tissue and smooth muscle riddled with vascular spaces
- Corpus spongiosum – surrounds the urethra and expands to form the glans and bulb of the penis
Epididymis
- Structure and location
 - Single tightly coiled tube enclosed in fibrous casing
 - Lies along top and side of each testis
 - Anatomical divisions include head, body, and tail
- Functions
 - Duct for seminal fluid
 - Also secretes part of seminal fluid
 - Sperm become capable of motility while they are passing through the epididymis
 - Its head joins the efferent ductules and caps the superior aspect of the testis
 - Nonmotile sperm enter, pass through its tubes and become motile (it takes about 20 days)
 - If the epididymus ducts were uncoiled, it would be about 20 feet long
 - Upon ejaculation the epididymis contracts, expelling sperm into the vas deferens

Vas Deferens (ductus deferens)
- Runs from the epididymis through the inguinal canal into the pelvic cavity then joins the duct of the seminal vesicle to form the ejaculatory duct
- Is approximately 18 inches long
- Propels sperm from the epididymis to the urethra
- Vasectomy – cutting and ligating the ductus deferens, which is a nearly 100% effective form of birth control
- Vasovasotomy – vasectomy reversal
Vas Deferens (ductus deferens) - continued

- **Structure and location**
 - Tube, extension of epididymis
 - Extends through inguinal canal, into abdominal cavity, over top and down posterior surface of bladder
 - Enlarged terminal portion called ampulla; joins duct of seminal vesicle

- **Function**
 - Excretory duct for seminal fluid
 - Connects epididymis with ejaculatory duct

Urethra

- Conveys both urine and semen
- Consists of three regions
 - Prostatic – portion surrounded by the prostate
 - Membranous – lies in the urogenital diaphragm
 - Spongy, or penile – runs through the penis and opens to the outside at the external urethral orifice
Accessory Glands

- **Seminal Vesicles**
 - Secrete 60% of the volume of semen
 - Join the vas deferens to form the ejaculatory duct
 - Sperm and seminal fluid mix in the ejaculatory duct and enter the prostatic urethra during ejaculation

- **Prostate Gland**
 - Encircles part of the urethra inferior to the bladder
 - Doughnut shaped
 - Plays a role in the activation of sperm
 - Function: adds slightly acidic, watery, milky-looking secretion to seminal fluid (30% of semen volume)

- **Bulbourethral Glands (Cowper’s Glands)**
 - Structure and location
 - Small, pea-shaped structures with approximately 2.5-cm long (1 inch) ducts leading into urethra
 - Lie below prostate gland
 - Function
 - Secrete alkaline fluid that is part of semen (5% of semen volume)
 - Produce thick, clear mucus prior to ejaculation that neutralizes traces of acidic urine in the urethra
Semen
- Provides a transport medium and nutrients, protects and activates sperm, and facilitates their movement
- Prostaglandins in semen:
 - Decrease the viscosity of mucus guarding the cervix
 - Stimulate reverse peristalsis in the uterus
 - Facilitate the movement of sperm through the female reproductive tract
 - The relative alkalinity of semen neutralizes the acid environment found in the male urethra and female vagina
- Only 2-5 ml of semen are ejaculated, but it contains 50-130 million sperm/ml

Ejaculation
- The propulsion of semen from the male duct system
- At ejaculation, sympathetic nerves serving the genital organs cause:
 - Reproductive ducts and accessory organs to contract and empty their contents
 - The bladder sphincter muscle to constrict, preventing the expulsion of urine
 - Bulbospongious muscles to undergo a rapid series of contractions
 - Propulsion of semen from the urethra

Composition and Course of Seminal Fluid
- Consists of secretions from testes, epididymides, seminal vesicles, prostate, and bulbourethral glands
- Each milliliter contains millions of sperm
- Passes from testes through epididymis, vas deferens, ejaculatory duct, and urethra

Male Fertility
- Relates to many factors: number, size, shape, and motility of sperm
- Infertility may be caused by antibodies some men make against their own sperm
- Male fertility begins at puberty and extends into old age

Cycle of Life: Male Reproductive
- Reproductive functions begin at time of puberty
- Development of organs begins before birth; immature testes descend into scrotum before or shortly after birth
- Puberty: high levels of hormones stimulate final stages of development
- System operates to permit reproduction until advanced old age
- Late adulthood: gradual decline in hormone production may decrease sexual appetite and fertility