The Digestive System
Dr. Gary Mumaugh

Digestive System: Overview
- The alimentary canal or gastrointestinal (GI) tract digests and absorbs food
- Alimentary canal – mouth, pharynx, esophagus, stomach, small intestine, and large intestine
- Accessory digestive organs – teeth, tongue, gallbladder, salivary glands, liver, and pancreas
Digestive Process
- The GI tract is a “disassembly” line
 - Nutrients become more available to the body in each step
- There are six essential activities:
 - Ingestion, propulsion, and mechanical digestion
 - Chemical digestion, absorption, and defecation

Gastrointestinal Tract Activities
- Ingestion – taking food into the digestive tract
- Propulsion – swallowing and peristalsis
 - Peristalsis – waves of contraction and relaxation of muscles in the organ walls
- Mechanical digestion – chewing, mixing, and churning food
- Chemical digestion – catabolic breakdown of food
- Absorption – movement of nutrients from the GI tract to the blood or lymph
- Defecation – elimination of indigestible solid wastes
Regulation of digestion involves:
- Mechanical and chemical stimuli, stretch receptors, osmolarity, and presence of substrate in the lumen
- Extrinsic control by CNS centers
- Intrinsic control by local centers

Receptors of the GI Tract
- Mechano- and chemoreceptors respond to:
 - Stretch by the presence of food
 - Osmolarity – solute concentration
 - pH of contents
 - Presence of end products of digestion
- They initiate reflexes that:
 - Activate or inhibit digestive glands to secrete digestive juices
 - Mix lumen contents and move them along

Nervous Control of the GI Tract
- Intrinsic controls
 - Nerve plexuses near the GI tract initiate short reflexes
 - Short reflexes are mediated by local enteric plexuses (gut brain)
- Extrinsic controls
 - Long reflexes arising within or outside the GI tract
 - Involve CNS centers and extrinsic autonomic nerves

Peritoneum and Peritoneal Cavity
- Peritoneum – serous membrane of the abdominal cavity
 - Visceral – covers external surface of most digestive organs
 - Parietal – lines the body wall
- Peritoneal cavity
 - Lubricates digestive organs
 - Allows them to slide across one another
- Mesentery – double layer of peritoneum that provides:
 - Vascular and nerve supplies to the viscera
 - A means to hold digestive organs in place and store fat

Layers of the Alimentary Canal
- Mucosa
 - Secretes mucus, enzymes and hormones
 - Absorption of end products of digestion into blood
 - Protection against disease
- Submucosa
 - Dense connective tissue with blood, lymph and nerves
- Muscularis externa or muscularis
 - Responsible for peristalsis and segmentation
- Serosa
 - Actually the visceral peritoneum
Mouth
- Oral or buccal cavity:
 - Is bounded by lips, cheeks, palate, and tongue
 - Has the oral orifice as its anterior opening
 - Is continuous with the oropharynx posteriorly
- To withstand abrasions:
 - The mouth is lined with stratified squamous epithelium
 - The gums, hard palate, and dorsum of the tongue are slightly keratinized

Histology of the Alimentary Canal

Mouth
- Oral or buccal cavity:
 - Is bounded by lips, cheeks, palate, and tongue
 - Has the oral orifice as its anterior opening
 - Is continuous with the oropharynx posteriorly
- To withstand abrasions:
 - The mouth is lined with stratified squamous epithelium
 - The gums, hard palate, and dorsum of the tongue are slightly keratinized
Lips and Cheeks
- Have a core of skeletal muscles
 - Lips: orbicularis oris
 - Cheeks: buccinators
- Vestibule – bounded by the lips and cheeks externally, and teeth and gums internally
- Oral cavity proper – area that lies within the teeth and gums
- Labial frenulum – median fold that joins the internal aspect of each lip to the gum

Palate
- Hard palate
 - Assists the tongue in chewing
 - Slightly corrugated on either side of the raphe (midline ridge) which helps to create friction
- Soft palate – mobile fold formed mostly of skeletal muscle
 - Closes off the nasopharynx during swallowing

Tongue
- Occupies the floor of the mouth and fills the oral cavity when mouth is closed
- Functions include:
 - Gripping and repositioning food during chewing
 - Mixing food with saliva and forming the bolus
 - Initiation of swallowing, and speech
- Intrinsic muscles change the shape of the tongue
- Extrinsic muscles alter the tongue’s position
- Lingual frenulum secures the tongue to the floor of the mouth
Salivary Glands

- Produce and secrete saliva that:
 - Cleanses the mouth
 - Moistens and dissolves food chemicals
 - Aids in bolus formation
 - Contains enzymes that break down starch
- Three pairs of extrinsic glands – parotid, submandibular, and sublingual
- Intrinsic salivary glands (buccal glands) – scattered throughout the oral mucosa
- Parotid – lies anterior to the ear between the masseter muscle and skin
 - Parotid duct – opens into the vestibule next to the second upper molar
- Submandibular – lies along the medial aspect of the mandibular body
 - Its ducts open at the base of the lingual frenulum
- Sublingual – lies anterior to the submandibular gland under the tongue
 - It opens via 10-12 ducts into the floor of the mouth
Saliva
- Secreted from serous and mucous cells of salivary glands
- A 97-99.5% water, hypo-osmotic, slightly acidic solution containing
 - Electrolytes
 - Digestive enzyme – salivary amylase
 - Proteins – mucin, lysozyme, defensins
 - Metabolic wastes – urea and uric acid
- Control of Salivation
 - Intrinsic glands keep the mouth moist
 - Extrinsic salivary glands secrete serous, enzyme-rich saliva in response to:
 - Ingested food which stimulates chemoreceptors and pressoreceptors
 - The thought of food
- Strong sympathetic stimulation inhibits salivation and results in dry mouth

Teeth
- Primary and permanent dentitions have formed by age 21
- Primary – 20 deciduous teeth that erupt at intervals between 6 and 24 months
- Permanent – enlarge and develop causing the root of deciduous teeth to be resorbed and fall out between the ages of 6 and 12 years
 - All but the third molars have erupted by the end of adolescence
 - There are usually 32 permanent teeth
- Teeth are classified according to their shape and function
 - Incisors – chisel-shaped teeth adapted for cutting or nipping
 - Canines – conical or fanglike teeth that tear or pierce
 - Premolars (bicuspids) and molars – have broad crowns with rounded tips and are best suited for grinding or crushing
- During chewing, upper and lower molars lock together generating crushing force
- Tooth Structure
 - Two main regions – crown and the root
 - Crown – exposed part of the tooth above the gingiva (gum)
 - Enamel – acellular, brittle material composed of calcium salts and hydroxyapatite crystals is the hardest substance in the body
 - Encapsules the crown of the tooth
 - Root – portion of the tooth embedded in the jawbone

Tooth and Gum Disease: Periodontitis
- Dental caries – gradual demineralization of enamel and dentin by bacterial action
 - Dental plaque, a film of sugar, bacteria, and mouth debris, adheres to teeth
 - Acid produced by the bacteria in the plaque dissolves calcium salts
 - Without these salts, organic matter is digested by proteolytic enzymes
 - Daily flossing and brushing help prevent caries by removing forming plaque
Tooth and Gum Disease: Periodontitis - continued

- **Gingivitis** – as plaque accumulates, it calcifies and forms calculus, or tartar
 - Accumulation of calculus:
 - Disrupts the seal between the gingivae and the teeth
 - Puts the gums at risk for infection
- **Periodontitis** – serious gum disease resulting from an immune response
 - Risk factors include smoking, diabetes, and oral or tongue or lip piercing

Pharynx

- From the mouth, the oro- and laryngopharynx allow passage of:
 - Food and fluids to the esophagus
 - Air to the trachea
- Lined with stratified squamous epithelium and mucus glands
- Has two skeletal muscle layers
 - Inner longitudinal
 - Outer pharyngeal constrictors

Esophagus

- Muscular tube going from the laryngopharynx to the stomach
- Travels through the mediastinum and pierces the diaphragm
- Joins the stomach at the cardiac orifice
- Glands secrete mucus as a bolus moves through the esophagus
Digestive Processes in the Mouth
- Food is ingested
- Mechanical digestion begins (chewing)
- Propulsion is initiated by swallowing
- Salivary amylase begins chemical breakdown of starch
- The pharynx and esophagus serve as conduits to pass food from the mouth to the stomach

Deglutition (Swallowing)
- Involves the coordinated activity of the tongue, soft palate, pharynx, esophagus and 22 separate muscle groups
- Buccal phase – bolus is forced into the oropharynx
- Pharyngeal-esophageal phase – controlled by the medulla and lower pons
 - All routes except into the digestive tract are sealed off
- Peristalsis moves food through the pharynx to the esophagus

Stomach – Gross Anatomy
- Chemical breakdown of proteins begins and food is converted to chyme
- Cardiac region – surrounds the cardiac orifice
- Fundus – dome-shaped region beneath the diaphragm
- Body – midportion of the stomach
- Pyloric region – made up of the antrum and canal which terminates at the pylorus
- The pylorus is continuous with the duodenum through the pyloric sphincter
Stomach – Gross Anatomy
- Greater curvature – entire extent of the convex lateral surface
- Lesser curvature – concave medial surface
- Lesser omentum – runs from the liver to the lesser curvature
- Greater omentum – drapes inferiorly from the greater curvature to the small intestine

Microscopic Anatomy of the Stomach
- Muscularis – has an additional oblique layer that:
 - Allows the stomach to churn, mix, and pummel food physically
 - Breaks down food into smaller fragments
- Gastric pits contain gastric glands that secrete gastric juice, mucus, and gastrin

Glands of the Stomach
- Gastric glands of the fundus and body have a variety of secretory cells
 - Mucous neck cells – secrete acid mucus
 - Parietal cells – secrete HCl and intrinsic factor

Stomach Lining
- The stomach is exposed to the harshest conditions in the digestive tract
- To keep from digesting itself, the stomach has a mucosal barrier with:
 - A thick coat of bicarbonate-rich mucus on the stomach wall
 - Epithelial cells that are joined by tight junctions
 - Gastric glands that have cells impermeable to HCl
- Damaged epithelial cells are quickly replaced

Digestion in the Stomach - The stomach:
- Holds ingested food
- Degrades this food both physically and chemically
- Delivers chyme to the small intestine
- Enzymatically digests proteins with pepsin
- Secretes intrinsic factor required for absorption of vitamin B₁₂

Regulation of Gastric Secretion
- Neural and hormonal mechanisms regulate the release of gastric juice
- Stimulatory and inhibitory events occur in three phases
 - Cephalic (reflex) phase: prior to food entry
 - Gastric phase: once food enters the stomach
 - Intestinal phase: as partially digested food enters the duodenum
- Cephalic Phase
 - Excitatory events include:
 - Sight or thought of food
 - Stimulation of taste or smell receptors
 - Inhibitory events include:
 - Loss of appetite or depression
 - Decrease in stimulation of the parasympathetic division
Regulation of Gastric Secretion - continued

- Gastric Phase
 - Excitatory events include:
 - Stomach distension
 - Activation of stretch receptors (neural activation)
 - Activation of chemoreceptors
 - Release of gastrin to the blood
 - Inhibitory events include:
 - A pH lower than 2
 - Emotional upset that overrides the parasympathetic division

- Intestinal Phase
 - Excitatory phase – low pH; partially digested food enters the duodenum and encourages gastric gland activity
 - Inhibitory phase – distension of duodenum, presence of fatty, acidic, or hypertonic chyme, and/or irritants in the duodenum
 - Initiates inhibition of local reflexes and vagal nuclei
 - Closes the pyloric sphincter
 - Releases enterogastrones that inhibit gastric secretion

![Stimulatory and Inhibitory Events Diagram](image-url)
Gastric Contractile Activity
- Peristaltic waves move toward the pylorus at the rate of 3 per minute
- Most vigorous peristalsis and mixing occurs near the pylorus
- Chyme is either:
 - Delivered in small amounts to the duodenum or
 - Forced backward into the stomach for further mixing

Regulation of Gastric Emptying
- Gastric emptying is regulated by:
 - The neural enterogastric reflex
 - Hormonal (enterogastrone) mechanisms
- These mechanisms inhibit gastric secretion and duodenal filling
- Carbohydrate-rich chyme quickly moves through the duodenum
- Fat-laden chyme is digested more slowly causing food to remain in the stomach longer

Small Intestine
- Gross Anatomy
 - Runs from pyloric sphincter to the ileocecal valve
 - Has three subdivisions: duodenum, jejunum, and ileum
 - The jejunum extends from the duodenum to the ileum
 - The ileum joins the large intestine at the ileocecal valve
- Microscopic Anatomy
 - Structural modifications of the small intestine wall increase surface area
 - Plicae circulares: deep circular folds of the mucosa and submucosa
 - Villi – fingerlike extensions of the mucosa
 - Microvilli – tiny projections of absorptive mucosal cells' plasma membranes

![Image](a) ![Image](b)
Intestinal Juice
- Secreted by intestinal glands in response to distension or irritation of the mucosa
- Slightly alkaline and isotonic with blood plasma
- Largely water, enzyme-poor, but contains mucus

Liver
- The largest gland in the body
- Superficially has four lobes – right, left, caudate, and quadrate
- The falciform ligament:
 - Separates the right and left lobes anteriorly
 - Suspends the liver from the diaphragm and anterior abdominal wall
- Liver: Associated Structures
 - Bile leaves the liver via:
 - Bile ducts, which fuse into the common hepatic duct
 - The common hepatic duct, which fuses with the cystic duct
 - These two ducts form the bile duct
- Liver: Microscopic Anatomy
 - Hexagonal-shaped liver lobules are the structural and functional units of the liver
 - Composed of hepatocyte (liver cell) plates radiating outward from a central vein
 - Portal triads are found at each of the six corners of each liver lobule
 - Portal triads consist of a bile duct and
 - Hepatic artery – supplies oxygen-rich blood to the liver
 - Hepatic portal vein – carries venous blood with nutrients from digestive viscera
 - Hepatocytes’ functions include:
 - Production of bile
 - Processing bloodborne nutrients
 - Storage of fat-soluble vitamins
 - Detoxification

Composition of Bile
- A yellow-green, alkaline solution containing bile salts, bile pigments, cholesterol, neutral fats, phospholipids, and electrolytes
- Bile salts are cholesterol derivatives that:
 - Emulsify fat
 - Facilitate fat and cholesterol absorption
 - Help solubilize cholesterol
- The chief bile pigment is bilirubin, a waste product of heme
The Gallbladder
- Thin-walled, green muscular sac on the ventral surface of the liver
- Stores and concentrates bile by absorbing its water and ions
- Releases bile via the cystic duct, which flows into the bile duct

Regulation of Bile Release
- Acidic, fatty chyme causes the duodenum to release:
 - Cholecystokinin (CCK) and secretin into the bloodstream
- Bile salts and secretin transported in blood stimulate the liver to produce bile
- Cholecystokinin causes:
 - The gallbladder to contract
 - The hepatopancreatic sphincter to relax
- As a result, bile enters the duodenum
Pancreas
- Location
 - Lies deep to the greater curvature of the stomach
 - Encircled by the duodenum and the tail abuts the spleen
- Exocrine function
 - Secretes pancreatic juice which breaks down food
 - Acini (clusters of secretory cells) contain zymogen granules with digestive enzymes
- Endocrine function
 - Release of insulin and glucagon

Pancreatic Juice
- Water solution of enzymes and electrolytes
 - Neutralizes acid chyme
 - Provides environment for pancreatic enzymes
- Enzymes are released in inactive form and activated in the duodenum
- Active enzymes secreted
 - Amylase, lipases, and nucleases
 - These enzymes require ions or bile for optimal activity
Regulation of Pancreatic Secretion
- Secretin and CCK are released when fatty or acidic chyme enters the duodenum
- CCK and secretin enter the bloodstream
- Upon reaching the pancreas:
 - CCK induces the secretion of enzyme-rich pancreatic juice
- Vagal stimulation also causes release of pancreatic juice

Digestion in the Small Intestine
- As chyme enters the duodenum:
 - Carbohydrates and proteins are partially digested
 - No fat digestion has taken place
 - Chyme is released slowly into the duodenum
 - Mixing is required for proper digestion
 - Virtually all nutrient absorption takes place in the small intestine

Motility in the Small Intestine
- The most common motion of the small intestine is segmentation
 - Initiated by intrinsic pacemaker cells
 - Moves contents steadily toward the ileoceleval valve
- After nutrients have been absorbed:
 - Peristalsis begins with each wave starting distal to the previous
 - Meal remnants, bacteria, mucosal cells, and debris are moved into the large intestine
- Control of Motility
 - Local enteric neurons of the GI tract coordinate intestinal motility
 - Cholinergic neurons cause:
 - Contraction and shortening of muscle layer
 - Distension of the intestine
 - The gastroileal reflex and gastrin:
 - Relax the ileoceleval sphincter
 - Allow chyme to pass into the large intestine

Large Intestine
- Has three unique features:
 - Teniae coli – three bands of smooth muscle
 - Haustre – pocketlike sacs caused by muscle tone
 - Epiploic appendages – fat-filled pouches of visceral peritoneum
- Is subdivided into the cecum, appendix, colon, rectum, and anal canal
- The saclike cecum:
 - Lies below the ileoceleval valve in the right iliac fossa
 - Contains a wormlike vermiform appendix
Colon
- Has distinct regions: ascending colon, hepatic flexure, transverse colon, splenic flexure, descending colon, and sigmoid colon
- The sigmoid colon joins the rectum
- The anal canal, the last segment of the large intestine, opens to the exterior at the anus

Valves & Sphincters of the Rectum and Anus
- Three valves of the rectum stop feces from being passed with gas
- The anus has two sphincters:
 - Internal anal sphincter of smooth muscle
 - External anal sphincter of skeletal muscle
- These sphincters are closed except during defecation
Bacterial Flora
- The bacterial flora of the large intestine consist of:
 - Bacteria surviving the small intestine that enter the cecum and
 - Those entering via the anus
- These bacteria:
 - Colonize the colon
 - Ferment indigestible carbohydrates
 - Release irritating acids and gases (flatus)
 - Synthesize B complex vitamins and vitamin K

Functions of the Large Intestine
- Other than digestion of enteric bacteria, no further digestion takes place
- Vitamins, water, and electrolytes are reclaimed
- Its major function is propulsion of fecal material toward the anus
- Though essential for comfort, the colon is not essential for life

Motility of the Large Intestine
- Haustral contractions
 - Slow segmenting movements that move the contents of the colon
 - Haustra sequentially contract as they are stimulated by distension of the colon
- Presence of food in the stomach:
 - Activates the gastrocolic reflex
 - Initiates peristalsis that forces contents toward the rectum
Defecation
- Distension of rectal walls caused by feces
 - Stimulates contraction of the rectal walls
 - Relaxes the internal anal sphincter
- Voluntary signals stimulate relaxation of the external anal sphincter and defecation occurs

Absorption
- Up to 10 L of food, drink, and GI secretions enter the GI tract daily
- Only 1 L or less reaches the large intestine
- Virtually all food, 80% of electrolytes and water absorb in the small intestine
- It is nearly impossible to exceed the absorptive capacity if the GI tract
- At the end of the ileum, all that remains is some water, indigestible food materials, and millions of bacteria
- The debris is passed on into the large intestine

Water Absorption
- Approximately 9 L of water, mostly derived from GI tract secretions, enter the small intestine daily
- Water is the most abundant substance in chyme
- 95% of water is absorbed in the small intestines by osmosis
- Normal rate of water absorption is 300-400 ml/hour
- Water moves in both directions across intestinal mucosa

Malabsorption of Nutrients
- Results from anything that interferes with delivery of bile or pancreatic juice
- Factors that damage the intestinal mucosa (e.g., bacterial infection)
- Gluten enteropathy (adult celiac disease) – gluten damages the intestinal villi and reduces the length of microvilli
 - Treated by eliminating gluten from the diet (all grains but rice and corn)
Developmental Aspects and Lifespan Changes

- During fetal life, nutrition is via the placenta, but the GI tract is stimulated toward maturity by amniotic fluid swallowed in utero
- At birth, feeding is an infant’s most important function and is enhanced by
 - Rooting reflex (helps infant find the nipple) and sucking reflex (aids in swallowing)
- Digestive system has few problems until the onset of old age
- During old age the GI tract activity declines, absorption is less efficient, and peristalsis is slowed
- Changes to the digestive system are slow and slight, and eventually include:
 - Teeth may become sensitive
 - Gums may recede
 - Teeth may loosen, break or fall out
 - Heartburn may become more frequent
 - Constipation may become more frequent
 - Nutrient absorption decreases
 - Accessory organs age but typically not necessarily in ways that effect health

Cancer

- GI cancers rarely have early signs or symptoms
- Metastasized colon cancers frequently cause secondary liver cancer
- Prevention is by regular dental and medical examinations
- Colon cancer is the 2nd largest cause of cancer deaths in males (lung cancer is 1st)
- Regular colon examination should be done for all those over 50
- Colon cancer is the 2nd largest cause of cancer deaths in males (lung cancer is 1st)
- Forms from benign mucosal tumors called polyps whose formation increases with age
- Regular colon examination should be done for all those over 50